Accommodating natural and sexual selection in butterfly wing pattern evolution.

نویسندگان

  • Jeffrey C Oliver
  • Kendra A Robertson
  • Antónia Monteiro
چکیده

Visual patterns in animals may serve different functions, such as attracting mates and deceiving predators. If a signal is used for multiple functions, the opportunity arises for conflict among the different functions, preventing optimization for any one visual signal. Here we investigate the hypothesis that spatial separation of different visual signal functions has occurred in Bicyclus butterflies. Using phylogenetic reconstructions of character evolution and comparisons of evolutionary rates, we found dorsal surface characters to evolve at higher rates than ventral characters. Dorsal characters also displayed sex-based differences in evolutionary rates more often than did ventral characters. Thus, dorsal characters corresponded to our predictions of mate signalling while ventral characters appear to play an important role in predator avoidance. Forewing characters also fit a model of mate signalling, and displayed higher rates of evolution than hindwing characters. Our results, as well as the behavioural and developmental data from previous studies of Bicyclus species, support the hypothesis that spatial separation of visual signal functions has occurred in Bicyclus butterflies. This study is the first to demonstrate, in a phylogenetic framework, that spatial separation of signals used for mate signalling and those used for predator avoidance is a viable strategy to accommodate multiple signal functions. This signalling strategy has important ramifications on the developmental evolution of wing pattern elements and diversification of butterfly species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective.

Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) female...

متن کامل

Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies.

Visual signaling in animals can serve many uses, including predator deterrence and mate attraction. In many cases, signals used to advertise unprofitability to predators are also used for intraspecific communication. Although aposematism and mate choice are significant forces driving the evolution of many animal phenotypes, the interplay between relevant visual signals remains little explored. ...

متن کامل

The evolution of wing color: male mate choice opposes adaptive wing color divergence in Colias butterflies.

Correlated evolution of mate signals and mate preference may be constrained if selection pressures acting on mate preference differ from those acting on mate signals. In particular, opposing selection pressures may act on mate preference and signals when traits have sexual as well as nonsexual functions. In the butterfly Colias philodice eriphyle, divergent selection on wing color across an ele...

متن کامل

Color-Pattern Evolution in Response to Environmental Stress in Butterflies

It is generally accepted that butterfly wing color-patterns have ecological and behavioral functions that evolved through natural selection. However, particular wing color-patterns may be produced physiologically in response to environmental stress, and they may lack significant function. These patterns would represent an extreme expression of phenotypic plasticity and can eventually be fixed g...

متن کامل

The Evolution of Pattern Formation in Butterfly Wings

I employed a comparative gene expression approach to address the evolution of butterfly wing pattern formation at several levels, including early pattern determination and pigment gene regulation during late development. Expression analysis of the receptor molecule Notch suggested several previously unknown roles for Notch signaling in butterfly wing patterning. Notch upregulation was found to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 276 1666  شماره 

صفحات  -

تاریخ انتشار 2009